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Text: In June 2001, a group of eight people from various functions involved with the 
insertion of polymer matrix composite materials in airframe structures via qualification of 
materials and certification of structure met to capture “What are the problems or issues 
that arise when inserting a new composite material into new design or an existing 
product?” This was one of several such groups that later included certification customer 
groups as well.  The results of these groups, which included disconnect between materials 
development and the intended use to the material (Figure 1) and the high cost of rework 
(Figure 2), were used to focus the developments of Accelerated Insertion of Materials – 
Composites (AIM-C) that has the objective to demonstrate concepts, approach, and tools 
that can accelerate the insertion of new materials into Department of Defense products. 
The AIM-C concept (Figure 3) is to utilize knowledge (heuristics, lessons learned, 
existing data), analysis techniques, and experimentation to develop a designer knowledge 
base (technical and production readiness information) from the outset, rather than the 
more traditional approach of sequential, unlinked research and development, sometimes 
locally optimized without a production readiness transition path.  The composite 
materials program is using carbon fiber/epoxy based resins for demonstration and 
validation at this time. 

Mathematical techniques including design of traditional and computational experiments 
and propagation of error methodologies are employed to focus efforts and to provide 
confidence to material implementers via the necessary technical, cost, and schedule data 
for transition with associated risk and payoff.  The AIM-C System is based on 
methodology developed in coordination with certifying personnel representing 
Department of Defense and commercial agencies.  Databases, heuristic models based on 
lessons learned, and science based analysis models are flexibly connected in the 
framework of the Robust Design Computational System (RDCS). 

Assessments indicate that the AIM-C methodology should accelerate insertion by 35
40% and result in a 4-fold reduction in rework costs.  An integrated product team that 
used the methodology for the design of a hat stiffened panel estimates a cost avoidance in 
redesign of 15% in the product definition time frame even with a very early prototype of 
the AIM-C system used.  Figure 4 schematically depicts the accelerated risk reduction 
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attributed to early understanding of insertion requirements and addressing weaknesses 
and unknowns through early, focused investigation. 
Acknowledgements:  The effort discussed is a result of Technology Investment 
Agreement, N00421-01-3-0098, entitled “Accelerated Insertion of Materials – 
Composites” (AIM-C) that is being jointly accomplished by Boeing and the U.S. 
Government under the guidance of NAST as part of the Defense Advanced Research 
Projects Agency (DARPA) sponsored Accelerated Insertion of Materials (AIM) 
initiative.  Dr. Leo Christodoulou of the Defense Sciences Office leads the initiative that 
is managed by Dr. Ray Meilunas of the Naval Air Systems Command.  Charles R. Saff 
and Dr. Karl M. Nelson of Boeing are Deputy Program Managers, working closely with 
Gail L. Hahn, the Program Manager, who is also with Boeing. 
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Materials Development
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• Existing Models Unlinked
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Figure 1.   Industrial Perspectives on Polymer Matrix Composites are the Technical 

Motivation for the AIM-C Methodology 
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Development Cycle 
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Implications of the current scenario:
• Risk Adversity – Stay with known materials and concepts

 
 

Figure 2.  The Issue:  Often, a majority of the time and money spent in the insertion 
process is for fixing problems because of poor material or process characterization 

and selection or poor design. 
 

 
Figure 3.  The AIM-C Methodology utilizes assessment, computational tools, 

knowledge management, feature based studies, analyses, and test to overcome 
obstacles to the accelerated insertion of materials. 
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AIM Provides an Analysis Approach Supported by 
Experience, Test and Demonstration 
FocusingFocusing on the Designer Knowledge Base Needs
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Figure 4.  The AIM focus on designer knowledge base needs accelerates insertion 

risk reduction and the insertion itself. 
 

Novel and Original Contributions of this Paper (Point-form Please): 
 
• Focused development and characterization on design knowledge base. 
• Coordinated use of existing knowledge, analysis, and focused testing 
• Applied physics based material and structural analysis methods 
• Used integrated engineering processes and simulations 
• Analyzed and managed uncertainty 
 - Early feature based demonstration 
 - Tracked variability and error propagation across scales 
• Avoided rework 
• Provided disciplined approach for pedigree management 
• Orchestrated knowledge management to efficiently tie together the above elements 
to a design knowledge base for qualification and certification 


